Dynamic, mechanical integration between nucleus and cell- where physics meets biology.

نویسندگان

  • Richard B Dickinson
  • Srujana Neelam
  • Tanmay P Lele
چکیده

Nuclear motions like rotation, translation and deformation suggest that the nucleus is acted upon by mechanical forces. Molecular linkages with the cytoskeleton are thought to transfer forces to the nuclear surface. We developed an approach to apply reproducible, known mechanical forces to the nucleus in spread adherent cells and quantified the elastic response of the mechanically integrated nucleus-cell. The method is sensitive to molecular perturbations and revealed new insight into the function of the LINC complex. While these experiments revealed elastic behaviors, turnover of the cytoskeleton by assembly/disassembly and binding/unbinding of linkages are expected to dissipate any stored mechanical energy in the nucleus or the cytoskeleton. Experiments investigating nuclear forces over longer time scales demonstrated the mechanical principle that expansive/compressive stresses on the nuclear surface arise from the movement of the cell boundaries to shape and position the nucleus. Such forces can shape the nucleus to conform to cell shapes during cell movements with or without myosin activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of a cluster of gold nanoparticles effect on cell absorbed dose using the Geant4 toolkit

Introduction: Radiotherapy plays a vital role in cancer treatment. To establish a new potency in radiosensitize tumor cells, delivery of High-Z materials is offered. To date, several simulation geometries have been applied to define simulation sets. The clustering of nanoparticles (NPs) within the cells is a prominent parameter usually ignored in simulation studies. <stro...

متن کامل

Effect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation

Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture  strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...

متن کامل

P-116: Absence of JMJD1A, A Testis- Specific Histone Demethylase, in Tissue Samples of TESE Negative Men

Background During mammalian spermatogenesis unique and dynamic epigenetic events occur leading to chromatin condensation. Through these events, histone demethylases such as JMJD1A play important roles in compaction of sperm chromatin, due to regulation of histone methylation dynamics and alteration of chromatin structure. As �histone methylation� is one of the best-characterized modifications i...

متن کامل

From A to Z and back? Multicompartment proteins in the sarcomere.

Sarcomeres, the smallest contractile units of striated muscle, are conventionally perceived as the most regular macromolecular assemblies in biology, with precisely assigned localizations for their constituent proteins. However, recent studies have revealed complex multiple locations for several sarcomere proteins within the sarcomere and other cellular compartments such as the nucleus. Several...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleus

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2015